翻訳と辞書
Words near each other
・ Fibex
・ Fibiger (crater)
・ Fibigia
・ Fibigia clypeata
・ Fibis
・ Fibiș
・ Fibiș River
・ Fibla carpenteri
・ FIBO Power Pro Germany
・ Fibonacci
・ Fibonacci coding
・ Fibonacci cube
・ Fibonacci heap
・ Fibonacci number
・ Fibonacci numbers in popular culture
Fibonacci polynomials
・ Fibonacci prime
・ Fibonacci Quarterly
・ Fibonacci quasicrystal
・ Fibonacci retracement
・ Fibonacci search technique
・ Fibonacci word
・ Fibonacci's identity
・ Fibonomial coefficient
・ Fibonorial
・ Fiborgtangen
・ FIBP
・ Fibra
・ Fibra óptica
・ Fibramia


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fibonacci polynomials : ウィキペディア英語版
Fibonacci polynomials
In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials.
==Definition==
These Fibonacci polynomials are defined by a recurrence relation:〔Benjamin & Quinn p. 141〕
:F_n(x)= \begin
0, & \mbox n = 0\\
1, & \mbox n = 1\\
x F_(x) + F_(x),& \mbox n \geq 2
\end
The first few Fibonacci polynomials are:
:F_0(x)=0 \,
:F_1(x)=1 \,
:F_2(x)=x \,
:F_3(x)=x^2+1 \,
:F_4(x)=x^3+2x \,
:F_5(x)=x^4+3x^2+1 \,
:F_6(x)=x^5+4x^3+3x \,
The Lucas polynomials use the same recurrence with different starting values:〔Benjamin & Quinn p. 142〕
L_n(x) = \begin
2, & \mbox n = 0 \\
x, & \mbox n = 1 \\
x L_(x) + L_(x), & \mbox n \geq 2.
\end
The first few Lucas polynomials are:
:L_0(x)=2 \,
:L_1(x)=x \,
:L_2(x)=x^2+2 \,
:L_3(x)=x^3+3x \,
:L_4(x)=x^4+4x^2+2 \,
:L_5(x)=x^5+5x^3+5x \,
:L_6(x)=x^6+6x^4+9x^2 + 2. \,
The Fibonacci and Lucas numbers are recovered by evaluating the polynomials at ''x'' = 1; Pell numbers are recovered by evaluating ''F''''n'' at ''x'' = 2. The degrees of ''F''''n'' is ''n'' − 1 and the degree of ''L''''n'' is ''n''. The ordinary generating function for the sequences are:
: \sum_^\infty F_n(x) t^n = \frac
: \sum_^\infty L_n(x) t^n = \frac.
The polynomials can be expressed in terms of Lucas sequences as
:F_n(x) = U_n(x,-1),\,
:L_n(x) = V_n(x,-1).\,

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fibonacci polynomials」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.